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Abstract. We give a survey of some recent developments on
bounds for permanents (Falikman-Egorychev, Voorhoeve, Bang,
Brégman), and show some related results on counting l-factors
(perfect matchings), 1-factorizations (edge-colourings), and
eulerian orientations of graphs.

1. INTRODUCTION.

The permanent of a square matrix A = (aij)z =1 is given by:
3=

) perh = Ecesnnir-l 210(1) "
where Sn denotes the collection of all permutations of {1,...,n}.

Despite its appearance as the simpler twin-brother of the determinant
function, the permanent turns out to be much less tractable. Whereas a
determinant can be calculated quickly (in polynomial time, with Gaussian
elimination), determining the permanent is difficult ("number-P-complete"
- see Valiant [27]). As yet, its algebraic behaviour appeared to a large
extent unmanageable, and its algebraic relevance moderate.

Most interest in permanents came from the famous Van der Waerden con-
jecture on the minimum permanent of doubly stochastic matrices (see below).
This conjecture was unsolved for more than fifty years, which, as contrast-
ed with its simple form, also contributed to the image of intractability
of permanents. Recently, Falikman and Egorychev were able to prove this
conjecture, using a classical inequality of Alexandroff and Fenchel. The
proof with eigenvalue techniques also revealed some unexpected nice al-
gebraic behaviour of the permanent function.

In fact, lower and upper bounds form a field where a large part of

the successes in controlling permanents have been obtained, also by the
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work of, e.g., Bang, Brégman and Voorhoeve. In this paper we discuss some
of the bounds for the permanent function, and for the related numbers of
1~factors and 1-factorizations of bipartite graphs. Especially, we survey
some recent work in this field.

The book by Minc [21] gives an excellent survey of what is known on
permanents until 1978. Van Lint [15] gave a survey of bounds on permanents
known in 1974. For some more historical remarks, see Van Lint [17].

In this introduction we first give a brief survey.

van der Waerden's conjecture. In 1926 Van der Waerden [30] posed the follow-

ing conjecture: if A is a doubly stochastic matrix of order n, then
(2) perA 2 n!/nn,

and equality only holds for A = %J‘ (J being the all-one matrix). A matrix
is doubly stochastic if it is nonnegative and all row and column sums are 1.
As the permanent function is not convex, the Kuhn-Tucker theory
(Lagrange multipliers) yields only necessary conditions for the doubly
stochastic matrices minimizing the permanent. The conjecture raised a
stream of research, especially during the last twenty years. In 1978, as
a prelude, the lower bound of e ' was proved by Bang [2] and Friedland [10],
which bound is asymptotically equal to Van der Waerden's conjectured
lower bound n!/nn, by Stirling's formula. Ultimately in 1979 and 1980,
Falikman [8] and Egorychev [6] published proofs of Van der Waerden's
conjecture.
The basis for their proofs is a permanent inequality, which is a
special case of an inequality for "mixed volumes" of convex bodies, found
in the thirties by Fenchel [9] and Alexandroff [1] (cf. Busemann [5]). Let

B be an nX(n-2)-matrix, and let x and y be column vectors of length n. If B

and x are nonnegative, then
2 .
(3) per (B,x,y) 2 per(B,x,x).per(B,y,y).

(This can be seen to be equivalent to: the function x—>/per(B,x,x) is
concave on the nonnegative orthant.) The inequality (3) can be proved
directly with an interesting eigenvalue technique ([12],[16]).

On the other hand, Marcus and Newman [19] and London [18] had shown
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that if A is a minimizing matrix (i.e. a doubly stochastic matrix minimizing
the permanent), then perAijZ perA for each (n-1)X(n-1)-minor Ai‘ of A. Hence,
if (B,x,y) is a'minimizing matrix, then per(B,x,y) < per(B,x,x) and per(B,x,y)
< per(B,y,y) (as we can expand these permanents by the last columns, just
like determinants, but without sign problems). Therefore, by (3), we have

per(B,x,y) = per(B,x,x) = per(B,y,y). This implies

(4) per (B, hx+hy, bx+4y) = 4%per (B, x,x) +per (B, x,y) +4per (B,y,y) =
per (B,x,y)

(using the fact that the permanent is linear in the columns). Since the
matrix (B,%x+%y,%x+%y) is doubly stochastic, by (4) it is minimizing again.
If we assume that we have chosen the matrix (B,x,y) so that the sum of its
squared components (i.e., Tr((B,x,y)T(B,x,y))) is as small as possible, it
follows that x=vy (as Tr((B,%x+%Yr%x+%y)T(B,%x+%y,%x+%y))S'Tr((B,x,y)T(B,x,y))
with equality iff x=vy). As the columns x and y were chosen arbitrarily,
we know that all columns of (B,x,y) are equal, that is, it is %Jﬁ

By extending these methods Egorychev proved that %J‘ is the only mini-
mizing matrix. In Section 2 we describe a complete proof of Van der Waerden's
conjecture, where we have benefitted by the presentations of Knuth [12] and

van Lint [16,17].

Permanents combinatorially. The permanent can be put in a more combinatorial

context as follows. For natural numbers k and n, denote

(5) A: = the set of all nonnegative integral nxn-matrices with all

line sums equal to k

(lines are rows and columns). Then Falikman and Egorychev's lower bound is

equivalent to:
(6) if A€ Az then perA 2= (%)nn!.

n 1 n_,,.n
Indeed, if AeA:, %A is doubly stochastic, and hence perA=k per(EA)Ek n!/n".

Conversely, any rational doubly stochastic matrix of order n is equal to

1 -n LN
%A for some k and some AEA]:‘. Then (6) gives per(;ﬂ-\) =%k perA2n!/n . So

n!/nn is a lower bound for rational doubly stochastic matrices, and hence,
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by continuity, it is a lower bound for all doubly stochastic matrices.

To obtain a more combinatorial interpretation, if A is in AE, we can
construct the bipartite graph G with vertices Viree e Vo rWeye e Wy connect-
ing \A and wj by aij (possibly parallel) edges. Then G is k-regular, and
the permanent of A is equal to the number of perfect matchings in G.

In 1968, Erdds and Rényi [7] published the following conjecture, weaker

than Van der Waerden's conjecture:
(7) there is an € >0 such that if A€ A: with k2 3, then perA 2 (1+€)n.

This conjecture is implied by Van der Waerden's conjecture through (6), as
(k/n)nn!Z(k/e)n by Stirling's formula.

The Erddés-Rényi conjecture was proved in 1978 independently by Voorhoeve
[29] and by Bang [2] and Friedland [10]. As mentioned before, Bang and
Friedland showed that perA=z e ™ for each doubly stochastic matrix A of
order n, and hence perA 2 (k/e)n for each Ace¢ Aﬁ. This shows (7).

Voorhoeve showed:

(8) if Ae Ai then perA = (%On.

In other words, any 3-regular bipartite graph with 2n vertices has at
least (4/3)n perfect matchings. Or: if A is a doubly stochastic matrix
of order n, with all components a multiple of 1/3, then perd = (4/9)n.
Asymptotically, for n+®, this is better than Falikman and Egorychev's
and Bang and Friedland's lower bounds ((3/e)n). The best lower bound
for permanents of matrices in Ai found before Voorhoeve's result was
3n-2 (Hartfiel and Crosby [11]). With X&nig's theorem (see Remark 1 be-
low) (8) implies that perAz (4/3)n for all Ae Aﬁ, k2 3, and hence the
Exrdds-Rényi conjecture follows.

In [26] it has been shown that the ground number 4/3 in (8) is best
possible. More generally, let £(k) be the highest possible number such
that pera2 £()” for all Ac AX. Then
(9) £(k) < ‘L‘l)_k___l

kk-2

Note that by Bang's result, f(k) 2k/e, and by Voorhoeve's result, £(3) =
4/3. The latter bound combined with (9) gives £(3) =4/3. Trivially we
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have £(1) = £(2) =1. It is conjectured in [26] that equality holds in (9)
for every k. That is:

(k—l)k-l) n

(10) (Conjecture) if A« AE then perAz ( 3
K-

This conjecture would give a bound asymptotic for k fixed and n—+<, while
Falikman and Egorychev's lower bound, in the form (6), is asymptotic for
n fixed, k>*. Conjecture (10) implies a better lower bound for permanents
of doubly stochastic matrices with all components being a multiple of 1/k.

Voorhoeve's method consists of a clever induction trick, which it is
tempting to generalize to values of k> 4. However, in this direction no
significant progress has been made as yet.

For a more extensive discussion of Voorhoeve's result and best lower

bounds, see Section 3.

Bang's method and edge-colourings. The method of Bang [2] gives rise to some

further graph-theoretic considerations.

Suppose you have given the first lesson of a course on graph theory.
You have explained Euler's result on the existence of eulerian orientations,
and you have given the definitions of regular and bipartite graphs, and of
perfect matchings. Now as homework you ask: show that each 64-regular bi-
partite graph has a perfect matching. Is this a reasonable question for
your students, whom you do not expect to discover for themselves the Kdnig-
Hall theorem?

Yes, it is. They know that the 64-regular bipartite graph has an euler-
ian orientation. By deleting the edges oriented from the "red" points to
the "blue" points, and by forgetting the orientation of the other edges, we
are left with a 32-regular bipartite graph. By the same reasoning this 32-
regular graph has a 16-regular spanning subgraph. And so on, until we have
a l-regular spanning subgraph, which is a perfect matching.

This idea can be extended from the existence of perfect matchings to
counting perfect matchings, and also to counting l-factorizations of reg-
ular bipartite graphs ([24]). This last can be seen as the graph-theoretic
interpretation of the ideas, in matrix language, of Bang, which have led
to his lower bound e .

It also leads to the following. In [24] it is conjectured that if G

is a k-regular bipartite graph with 2n points, then
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. 2, kn . .
(11) (Conjecture) G has at least (k! /k)" l-factorizations.

By an averaging argument it can be shown that the ground number in (11), as
a function of k, cannot be higher. Moreover, using the ideas described above,
and using Voorhoeve's lower bound, it can be shown that (11) is true if k

has no other prime factors than 2 and 3.

These results are described more extensively in Section 4.

Brégman's upper bound. Now we turn to upper bounds. It is easy to see that

the maximum permanent over the doubly stochastic matrices is 1, which is
attained, exclusively, by the permutation matrices. Similarly, the maximum
permanent over matrices in Ai is equal to k",

The problem becomes more difficult if we go over to a further discret-

ization. In 1963, Minc [20] posed as a conjecture:

(12) if A is a square (0,1)-matrix of order n, with row sums TyreearX

n
then /
1/r;
<m® ' i
perA i=1 ri.

In 1973, Brégman [4] found a proof for this conjecture, using ideas from
convex programming, and some theory of doubly stochastic matrices. In [23]
a shorter proof was given, using elementary counting and the convexity of
the function xlogx.

Note that (12) implies that

(13) if Ac Ai and A is (0,1), then peras (k:/X) ™

The ground number here can be easily seen to be asymptotically best possible
(for fixed k).

The proof of Brégman's upper bound is given in Section 5.

Eulerian orientations. Finally, as a further illustration of the methods,

we consider bounds for the number of eulerian orientations of undirected
graphs. Let G = (V,E) be a loopless, 2k-regular undirected graph, with |V|
=n and |E| = m. Let €(G) denote the number of eulerian orientations of G.
Let B be the nXm-incidence matrix of G, and let A be the mXm-matrix obtained

from B by repeating each row k times. Then one easily sees:
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(14) e(q) = BB
k"

Now it can be shown that

-k, 2
(15) )" < c@ <V M
The upper bound can be derived straightforwardly from Brégman's bound (12)
using (14). The lower bound in (15) is better than the one derived with
(14) from the conjectured lower bound (10).

It can be shown moreover that the ground numbers in (15) are best

possible. These results are described further in Section 6.

Throughout this paper, n denotes the orxrder of the matrix in question.
Furthermore, if the matrix A is given, Aij denotes the minor of A obtained

by deleting the i-th row and the j-th column of A.
REMARK 1. We here remark the following well-known facts.
(16) Doubly stochastic matrices minimizing the permanent exist.

This follows of course from the compactness of the set of doubly stochastic

matrices, and from the continuity of the permanent function.

(17) Each doubly stochastic matrix is a convex linear combination of

permutation matrices.

This result of Birkhoff [3] and Von Neumann [22] can be seen by induction

on n. It suffices to show that each vertex of the polytope of doubly stoch-
astic matrices is a convex linear combination of permutation matrices (and
hence is a permutation matrix itself). Let A = (aij)ilj=1
this polytope. Then n? linearly independent inequalities in the system:

be a vertex of

aij 20 (i,j=1,...,n), Ziaij= 1 (3=1,...,n), zjaij= 1 (i=1,...,n), are satis-
fied with equality. So A has at least n’-2n+l zeros, and hence at least one
row has n-1 zeros. So aij= 1 for some i,j. Then Aij is doubly stochastic
again, and by the induction hypothesis, it is a convex linear combination
of permutation matrices of order n-1. Therefore, A itself is a convex linear
combination of permutation matrices of order n.

(17) implies:
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(18) perA > 0 if A is a doubly stochastic matrix; perA 2 1 if A is in
k

An'
The second assertion is equivalent to a result of K&nig [14]: each k-regular
bipartite graph has a perfect matching. So for each Ace¢ Ai there exists an
A'eAﬁ“1 with A' £A (£ component-wise). Inductively it implies that each k-
regular bipartite graph has a k~edge colouring, which is another theorem of
Kénig [13].

2. FALIKMAN AND EGORYCHEV'S PROOF OF THE VAN DER WAERDEN CONJECTURE.

Van der Waerden's conjecture (2) was proved by Falikman [8] and
Egorychev [6] (cf. Knuth [12] and Van Lint [16,17]). The ingredients are
two results, the first one being a special case of an inequality for "mixed
volumes" of convex bodies, due to Fenchel [9] and Alexandroff [1] (cf.

Busemann [5]).

THEOREM 1 (Alexandroff-Fenchel permanent inequality). If B is a nonnegative

nx (n-2)-matrix, x and y are column vectors of length n, and x2 0, then
2
(19) per (B,x,y) 2 per(B,x,x).pex(B,y,y).

If B and x are strictly positive, equality holds in (19) if and only if

y = Ax for some \.

PROOF. The proof is by induction on n, the case n=2 being easy. Suppose the
theorem has been proved for n-1. To prove (19), by continuity we may assume
n

)

that all components of B and x are positive. Define the matrix Q = (q, i,5=1
, 3=

ij
by:
(20) qij = per(B,ei,ej),

where e, and e, denote the i-th and the j-th column standard basis vectors.
So per(B,x,y) = xTBy.

I. We first show that Q is nonsingular with exactly one positive eigenvalue
(i.e., it defines a "Lorentz space"). To see that Q is nonsingular, assume

that Qc = 0, that is:
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]
o

(21) per(B,c,ej)

for j=1,...,n. Let B = (C,z), where z is the last column of B (so C is an

nX (n-3)-matrix). Then for each j=1,...,n:
2
(22) 0 = per (C,z,c,ej) 2 per(c,z,z,ej).per(C,c,c,ej).

The equality here follows from (21), and the inequality from our induction
hypothesis: as ej is the j-th standard basis vector, the matrices in (22)
can be replaced by their (j,n)-th minors.

Since per (C,z,z,ej) >0 (as C and z are positive), (22) gives that

per(C,c,c,ej) <0. As from (21) per(c,z,c,ej)=0 for all j, we know:

(23) 0=per(C,c,c,z) =)

<
=1 szer(c,c,c,ej) < 0.

As z is positive, (23) implies that per(C,c,c,ej) =0 for all j. Hence the
inequality in (22) holds with equality, for all j, and therefore, from the
induction hypothesis, c= Az for some A. If A#0 then O=per(B,c,ej) =
Aper(B,z,ej) #0 (as B and z are positive), which is a contradiction. So A=0
and hence c=0. Concluding Qc =0 implies ¢=0, and so Q is nonsingular.

Now, for each real number u, let the matrix Qu be defined by:

n

(24) Q. = (per(uB+(1~u)J,ei,ej))llj=l

U
(here J denotes the all-one nX(n-2)-matrix). So Q1 = Q. Since uB+(1-u)J is
a positive matrix for 0<p <1, we know by the above that Qu is nonsingular
for 0<u<1, For u=0, Qu is a matrix with zero diagonal and with all off-
diagonal components equal to (n-2)!, and so it has exactly one positive

eigenvalue. Therefore, as the shift of the spectrum of Qu is continuous in

u, also for u=1 the matrix Qu=Q has exactly one positive eigenvalue.
II. We now prove the theorem. The inequality (19) is equivalent to:
T .2 T T
(25) (xov)° 2 (x Qx).(y Qv)-

This inequality holds trivially with equality if x and y are linearly depend-

ent. If x and y are linearly independent, the (2-dimensional) linear hull of



Schrijver: Bounds on permanents 116

x and v intersects the ((n-1)-dimensional) linear hull of the eigenvectors
of Q with negative eigenvalue in a nonzero vector (as Q has n-1 negative

eigenvalues). Therefore
(26) Oxtny) Q(Ax+uy) < 0

for some A1 not both zero. Since xTQx = per(B,x,x) >0 (as x>0), we know
that 1 #0. We may assume U =1. Then the left hand side of (26) becomes a
quadratic polynomial in A, with positive main coefficient XTQX, and at

least one negative value. Hence its discriminant is positive, which means

that (25) holds, with strict inequality. [

A second ingredient for the proof of Van der Waerden's conjecture is

a theorem due to Marcus and Newman [19] and London [18].

THEOREM 2. If A is a doubly stochastic matrix minimizing the permanent,

then perAijEZPerA for each minor Aij of Aa.

PROOF. Let A be a minimizing matrix of order n. Consider the directed bi-

partite graph G with vertices u PU aVre ey Yoy and with arcs:

1

. . < .
(27) (1) (ui,vj) iff perAij-—perA.

. . N > .
(i1) (vj,ui) iff aij 0 and perAij perA

Assume that, say, perA,, < perA. We first show that then the arc (ul,vl) of

11
G is not contained in any directed cycle of G. For suppose that C is such

a cycle. Let € >0, and

28 i +e i
(28) (i) replace aij by aij if (ui,vj) belongs to C,

(1i) replace aij by aij—s if (vj,ui) belongs to C.

Let Ae be the matrix arising in this way. Now perAE is a polynomial in €,

and:

(29) perd_ = perAﬁ-e[Z o PSR, —Z

2
5 (vj’ui)ecperAiJ + 0(e) (e+0) .

(ui,vj)s

The coefficient of € in (29) is negative, by (27) and as perA, 6 <perA (the

11
first summation is strictly smaller than %|C|perA, and the second summation

P
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is at least %|C|perA). So by choosing € small enough A_ is doubly stochastic
with perAE < perA, contradicting that A is minimizing.

So the arc (ul,vl) is not contained in any directed cycle. Let, say,
vl,. .. ’Vk'ut+1""'un be the points of G which can be reached by a directed
path from Vl' So k,t2 1, and G has no arcs (ui,vj) with i 2 t+1 and j 2 k+1,

nor arcs (vj,ui) with j<k and i<t. That is:

(30) (1) if iz t+1 and j 2 k+!1 then perAij > pera;

(ii) if i<t and j<k then aij =0 or perAi:.I < perA.

Now :

(31) (n-k-t)perA = zi>t2j aijperA:,Lj - EjSkzi aijperAij =

[Zi>tzj>kaijpemij'ziStszkaijperAij) B (Zi>tzj>kaij"ziStzj5kaij)PerA=

= (zi>t2j aij - szkZi aij)perA = (n-k-t)perA.

Here the inequality follows from (30). The equalities follow from zjaij=1
and XjaijperAij = perA for all i (and similarly for j), and by crossing out
equal terms in the summations.

Since the first and the last term in (31) are equal, the inequality is
an eqguality. Hence, by (30), aij=0 if i<t, jsk or if i>t, j > k. Therefore,
all terms in (31) are zero, and hence n = k+t.

Since k,t21 and n = k+t, it follows that k,t<n-1. Hence from (30),

perAnn> perA > 0. So there is a permutation 0 of {1,. ..,n—l} with a, 0

>
io (1)
for i = 1,...,n-1. As k> (n-t)-1 this implies that aij >0 for at least one

pair of 1 £t, j<k, contradicting what we showed above. 0

(Alternatively, Theorem 2 can be proved using Kuhn-Tucker theory.)

Combining Theorems ! and 2 gives the theorem of Falikman and Egorychev.

THEOREM 3 (Falikman-Egorychev theorem). If A is a doubly stochastic matrix

of order n, then perAzn!/nn.

PROOF. We first show that if A = (B,x,y) is a doubly stochastic matrix mini-

mizing the permanent (where x and y are the last two columns of A), then

(32) per (B,x,y) = per(B,x,x) = per(B,y,y)-
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Indeed, by Theorem 2,
(33) per (B,x,x) = EixiperKB,x,ei) 2 per(B,x,y)zj_xi.= per(B,x,y) .

Similarly, per(B,y,y) 2per(B,x,y). On the other hand, by Theorem 1,
perz(B,x,yﬁ > per(B,x,x)per(B,y,y). Since per(B,x,y) >0 (cf. (18)), it
follows that per(B,x,y) = per(B,x,x) = per(B,y,y).

(32) implies that:

(34) per (B, Yx+4y , x+hy) = 4pex (B,x,x)+4oer (B,x,y) +4per (B,y,y) = pexr (B,x,y) .

Since (B,%x+4%y,%x+%y) is doubly stochastic again, it is again minimizing.

T .
Now suppose we have chosen A such that z. a?. = TrA A is as small as

possible (this is possible by compactness). A;éamZJA # (1/n)J. Without loss
of generality, A = (B,x,y) with x # y. By the above, the matrix A' :=

(B, hx+%y,%x+hy) is minimizing again. However, Tr(A'TA') <Tr(ATA) (as x # v),
contradicting our assumption.

Therefore, A = (1/n)J, and perA = n!/nn. 0

Extension of these arguments gives the uniqueness of (1/n)J as a mini-
mizing matrix. Suppose there exists a doubly stochastic matrix A # (1/n)J
with pera = n!/nn. Choose such A wiEh as few zero components as possible.

If at least n-1 columns of A are strictly positive, we can assume that
A = (B,x,y) with B>0, x>0 and x # y. Then from (32) it follows that we
have equality in (19). Hence by Theorem 1, y = Ax for some A. As A is
doubly stochastic, we have A = 1 and x = y, contradicting our assumption.

If A has at most n-2 strictly positive columns, we can assume that A =
(B,x,y) is such that not all columns of B are positive, and such that y has
a zero in at least one coordinate place where x is positive. Then by (34)
(B, hx+hy, bx+%y) is again a minimizing matrix, distinct from (1/n)J, but

with fewer zeros than A, contradicting our choice of A.
3. VOORHOEVE'S BOUND AND BEST LOWER BOUNDS.

Erdés and Rényi [7] posed in 1968 the following conjecture, weaker than

. . . k .
Van der Waerden's conjecture: there exists an € >0 such that if A€ An with
n
)

k 2 3 then perA 2 (l1+€) . We recall that Ai denotes the set of nonnegative
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integral nxn-matrices with all line sums equal to k.
Erdds and Rényi's conjecture was proved independently by Voorhoeve [29]
and by Bang [2] and Friedland [10]. The latter two showed that perA2 e
for each doubly stochastic matrix of order n. Hence perA = knper((l/k)A)
2 (k/e)n for A in Ai. For a derivation of this result, see Section 4.
In this section we focus on Voorhoeve's result, which says that perA
> (4/3)™ for each Ae Ai. This improves lower bounds found earlier considerably
the best one being perA = 3n-2 for AsiAi (Hartfiel and Crosby [111).
The trick of Voorhoeve consists of considering the collection:
(35) Ki := the collection of nonnegative integral nXn-matrices with

row sums 2,3,...,3 and column sums 2,3,...,3.

He showed that also for matrices A in Az one has perAz2 (4/3)n. This stronger

result turned out to be the key to applying induction.
THEOREM 4 (Voorhoeve's bound). If A€ Ai then perA 2 (4/3)n.

PROOF. It is shown that perA 2 (4/3)n for Ac Ki by induction on n. This im-
plies the theorem, as if A€ Ai and B arises from A by decreasing one posi-
tive entry of A by one, then Be Ki and perA 2 perB 2 (4/3)n.

So let A€ Ki. Without loss of generality the first row and the first
column both have sum 2. There are the following four cases, possibly after

permuting the columns of A (a,b and ¢ denote column vectors of length n-1).

0110.

..0 3
abc D )é per(a,b,D)+per(a,c,D) 2 per(a,b+c,D) =

(36) perA = per(
1 41 4\yn-1
5(per(a,d,,D)+per(a,d,,D)+per(a,d,,D)+per(a,d,,D)) = 7.4 (3) =

(a/3)".

1

(Explanation: follows by expanding the permanent by the upper row; * fol-

lows as the permanent is linear in the columns; } the components of b+c add

. _ 1 . .
up to 4; hence we can write b+c = 3(d1+d2+d3+d4) with dl,d2,d3,d4 nonnegative
integral column vectors, each with column sum 3; 4 this inequality follows

from the induction hypothesis, as each (a,di,D) belongs to A )

n-1-

6 -
(37) perA = per(g i 0'6'0) £ 2.per(a,D) 2 2(%)n ! Z(%ﬁn
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(Explanation:® expand the permanent by the upper row; ¢ since (a,D) belongs

~

to Ai—l’ we can apply the induction hypothesis.)

(38) perA = per(é (1) O'I'D'O) Z per(a,D)+per(b,D) 2 per(a+b,D) 2
10
3 ,4,n-1 4. n
1:a(per(dl,D)«l-per(dz,D)+per(c13,D)) z 5. (3) z (3 .

(Explanation:’ expand the permanent by the upper row; ® as the permanent is
linear in the columns; ° the components of a+b add up to 3; write atb = lz(d1+
d2+d3) with d1’d2’d3 nonnegative integral vectors each with sum 2; © since

each matrix (di,D) belongs to A3

-1’ this inequality follows from the in-

duction hypothesis.)

(39) perA = per(g O'[‘)

2 13
.O) 4 7. perd g 2.pexD' 2 2. (%) 2 ().
(Explanation: u expand the permanent by the upper row; ?let D' arise from
D by decreasing one positive entry of D by one; B since D'e Ai—l' this in-

equality follows from the induction hypothesis.) 0

By sharpening the method, Voorhoeve showed the better lower bound of
%—(%)n. However, the ground number 4/3 is best possible. This follows by
taking k=3 in the following result of [26] (cf. wilf [31]), which is

proved by an averaging argument.

THEOREM 5. Let f(k) be the largest number such that perA 2 f(k)n for each
A€ Ak. Then
n

(k-1)

k-l
(40) f£(k) <
k-2

PROOF. Let P
A k,

into n classes of size k. So we have

, be the collection of all ordered partitions of {1,2,...,nk}

_ _ (nk)!
(41) Py,n 7 IPk,n| B o :
A system of distinct representatives (SDR) of a partition A = (Alu--,An)
in Pk n is a subset S of {1,...,nk} such that ISﬂAi| =1 for i=1,...,n. Clearly,
’

the number of SDR's of A is equal to k".

Now let A = (A so--sA)) and B = (By,...,B) be in P, . Let s (A,B)

1 k,n
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denote the number of common SDR's of A and B. Then s(A,B) is equal to the

permanent of the matrix C = CRR , where
ij'i,j=1
(42) 5y = !Ainle (1,3 =1,...,n).
Indeed, if 0 is a permutation of {1,...,n}, then I® & is the number

i=1 “io (i)

of common SDR's S containing an element in AinBc(i)' for each i. Hence

n

= 11 =
(43) s(A,B) zossn i=1 3jo(i) = Perc.
Since )7 . c..= 1Bl =%x=1Ia] =0 ¢ we know that C e AX. There-
i=1 %3 3 i j=1 i3y’ n’
fore,
n
(44) s(A,B) 2 £(k).
Now let Ae P, be fixed. Any SDR S = {sl,...,sn} of A is an SDR
14

' s B i . . s
of n'Pk—l,n partitions in Pk,n’ as we can distribute Syr---sS, in n! ways
among Bi""'Bn’ whereas the other elements of Bl""’Bn can be chosen
freely. Since A has k" SDR's, we find

(45) lgep, sAB) =x™mtp _, .
k,n !

7

Combining (41), (44) and (45) gives:

n
k' nlp _ Ny —n) !
(46) f(k)n < k-1,n - k 'n!k! (nk-n)! - kzn/(nk

Px,n (k=1) ™ (nk) ! n!

By Stirling's formula, (46) implies (40). [

We conjecture that in fact the upper bound in Theorem 5 always gives
the right value of f£(k). This is trivially true if k=1 or k=2 (as £(1) =
£(2)=1), and is also true for k=3 by Voorhoeve's theorem (Theorem 4). At
the end of the following Section we shall see some more lower bounds for
f£(k).

Note that the proof of Theorem 5 in fact gives (cf. (46)):

2n
i <
(47) mlnAﬁA: per A < k /(2?

y-
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4. BANG'S LOWER BOUND AND EDGE-COLOURINGS.

We now give a proof of Bang's lower bound of e“n for permanents of
doubly stochastic matrices of order n. His method can be interpreted, and
extended, in terms of edge-colourings, or l-factorizations, of bipartite
graphs. A k-edge-colouring of a bipartite graph is an ordered partition of
the edge set of the graph into k classes, each class being a perfect match-
ing. It is a well-known theorem of Kdnig [13] that each k-regular bipartite
graph has at least one k-edge-colouring (see Remark 1 in Section 1). Here
we consider counting them.

In [24] it is shown that if k = 223°, and G is a k-regular bipartite
graph with 2n vertices, then

2

1
(48) G has at least [Eﬁzﬂll k-edge-colourings.
k

Moreover it is shown that for each fixed k, the ground number in (48) is

best possible. It is conjectured that (48) holds for every k. This conjecture
would follow from the conjecture made in Section 3 that f(k) = (k—l)k_l/kk—2
for each k, that is, that each k-regular bipartite graph has at least
((k—l)k—l/kkuz]n perfect matchings. We could first choose a perfect matching,
delete this perfect matching, next choose a perfect matching in the remainder,

and so on. Hence G would have at least

oDt )2 22 _li)n _ (}(_Zi)n
2L

kk—Z kk

(49) ( -
(k—l)k 3 3 2

k~edge-colourings.
In other words, let g(k) be the highest number such that each k-requlax

bipartite graph with 2n points has at least g(k)n k-edge-colourings. Then
g(k) < k!z/kk, and we have equality if k = 2a3b. This is the content of the

following two theorems, the first one being proved similarly to Theorem 5.
2
THEOREM 6. g(k) € k!Z/K*.

PROOF. Again, let P and p, _ be as in the proof of Theorem 5. For A,B in
—_— 1

k,n

denote by c(A,B) the number of partitions C = (C reeesC) of {1,...,nk}

P
k,n
into k classes of size n such that

1

(50) lAianl = lBianI =1
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for i=1,...,n and j=1,...,k. That is, each Cj is a common SDR for A and

B. It is easy to see that c(A,B) is equal to the number of k-edge-colourings
of the k-regular bipartite graph with vertices, say, ACRERETA AV PR A
where v, and wj are connected by IAinle edges, for i,j=1,...,n. In partic-
ular,

(51) c(A,B) 2 g(x)".

Now let Ae Pk,n be fixed. There are k!™ possible partitions C =
(CqrevsC) of {1,...,nk} with lAianl =1 for i=1,...,n and j=1,...,k.
For each such partition, there are n! partitions B in Pk,n such that
IBianl =1 fori=1,...,nand j=1,...,k. So
(52) Tgep  c(.B) = x:™nts

k,n

Combining (41), (51) and (52) gives

K120 K

n
(53) g(k) < W):— .

By Stirling's formula, (53) implies Theorem 6. O

A special case of the idea behind the next theorem is the following.
Let G = (V,E) be a 2k-regular bipartite graph, with 2n points. A k-factor
is a collection E' of edges of G such that each point is contained in exact-
ly k edges in E'. So E' is a k-factor in G if and only if E\E' is a k-factor.
Now it is easy to see that the number of k-factors of G is equal to
the number ¢(G) of eulerian orientations of G. The latter can be seen to

be at least
(54) 2 7C .

Indeed, we can replace the graph G by a graph G', by splitting each
point v of G into k copies, and by distributing the 2k edges incident with v
among the k copies of v, in such a way that G' will be 2-regular. Then G'
trivially has an eulerian orientation, which induces an eulerian orientation
in G. Moreover, each eulerian orientation in G arises in this way from an

2 . :
eulerian orientation in exactly k! n graphs G' (as in each point of G we
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have to make pairs of an ingoing and an outgoing edge). Since there are

exactly

—k(2k)!)2n

(55) (2 o

graphs G' in total, the number of eulerian orientations of G is at least
(55) aivided by k!2", which is (54).
With this it can be seen that any 2t—regular bipartite graph G = (V,E)

on 2n points has at least

t, ,2
27)!7\n
(56) ﬁi—l;;ﬂ
t2
2
2t—edge—colourings (by Theorem 6, the ground number in (56) is best possible).
This can be shown by induction on t, the case t=0 being trivial. By (54),

G has at least

t-1 t
(57) (2 (2=
t~1
2
2t_1—factors E'. By induction, the graphs (V,E') and (V,E\E') have at least
2 H:2
(58) (1)
(t-1)2

2

2t—1—edge-colourings. So the number of 2t—edge—colourings of G is at least
(58) squared times (57), which is (56).

This idea is extended in Theorem 7.

THEOREM 7. If g(k) = k!2/kk for k=g and k=t, then also for k=st.

PROOF. Let G = (V,E) be an st-regular bipartite graph with 2n points, with,
say, 9(G) st-edge-colourings. Consider all possible graphs G' arising from
G as follows. Each point of G is split into s new vertices, where each edge
e of G is replaced by one new edge connecting two of the new vertices re-
placing the endpoints of the original edge e, in such a way that the new
graph G' is t-regular. So the number of graphs G' arising in this way from

G is equal to:
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(st) y2n
(=25

(59)
£

’
since for each point v of G we have to partition the edges incident to v
into s classes of size t, which can be done in (st)!/t!S ways.

Let T be the collection of all partitions (El”"’Et) of the edge set
of G into t classes, such that each class Ej is an s-factor of G. Now any
t-edge-colouring (El""’Et) of a derived graph G' yields a partition in
. Conversely, each partition in I arises in this way from a t-edge-colour-~
ing of s!2tn graphs G' (as for each point v of G and for each j=1,...,t, we
have to take care that the edges in Ej incident to v will go to distinct
copies of v in G', which means that for each v and j there are s! possibil-
ities).

Hence, by (59),

(60) 1] = (ﬁL)S!)zn_g(t)sn/S:ztn
t!

as each graph G' has at least g(t)Sn t-edge-colourings.

Now each class Ej of a partition E in II can be refined to an s-edge-
colouring of the graph (V,Ej) in at least g(s)n ways. So E can be refined
to an st-edge-colouring of G in at least g(s)tn ways. Therefore, the total
number ¢ (G) of st-edge-colourings of G satisfies (using (60)):

1 I2
(61) 0(6) > ITl.g(e) ™ 2 (iiﬁ'—tjzn.ms)t“.g(t)sn = ({s®): ym,

£1Ss! (st) St

As this holds for each st-regular bipartite graph G with 2n points, it

follows that g(st) =2 (st)!2/(st)St- g

This implies the following.

COROLLARY 7a. If k has no other prime factors than 2 and 3, then any k-
regular bipartite graph with 2n points has at least (k!z/kk)n k-edge-colour-

ings. For fixed k this ground number is best possible.

PROOF. By Theorems 6 and 7 it suffices to show that g(2) 21 and g(3) 24/3.
The former inequality is trivial, while the latter follows from Voorhoeve's
lower bound (Theorem 4) that the number of perfect matchings in a 3-regulax

bipartite graph with 2n points is at least (4/3)n. 0
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From Theorem 7 cne can also derive the lower bound of Bang [2] and

Friedland [10].

COROLLARY 7b. The permanent of a doubly stochastic matrix of order n is at

least e_n.

PROOF. Since the dyadic doubly stochastic matrices form a dense subset of
the space of all doubly stochastic matrices, it suffices to prove the lower
n
. . b i
ai])i,]=1 e a iyadlc doubly
stochastic matrix. Let u be a natural number such that 2°A is integral, and

bound for dyadic matrices only. Let A = (

let for each tzu, Gt be the 2t—regular bipartite graph with points ACRERRY

t . ’ L.
Vn’wl""’wn' where there are 2 aij edges connecting Vi and wj, for i,j =

1,...,n. This means that for t=2u, the graph G_ arises from the graph Gu

t
by replacing each edge by 2t—u parallel edges.

Now the number u of perfect matchings in Gu is easily seen to be equal

to:
(62) p = 2" pera.

Moreover, the number Yt of 2t—edge—colourings of Gt satisfies:

t u
(63) Y, A T

since each colouring is determined by specifying 2t perfect matchings in G ,

u
together with an ordering of the otn "copies" in Gt of each of the 2"n
edges of Gu' But by Corollary 7a we know:

(25128

(64) Y. 2
£ 2t2tn

Combining (62), (63) and (64) gives a lower bound for perA depending on t

and n, which, by Stirling's formula, tends to e as tow. O

REMARK 2. Concluding we have met above the following upper and lower bounds

for the functions f£(k) and g(k).

(65) k-1)*7 ke 4
£ TS5 gl ST, £(=ER)=giD=g(2)=1, £03) =5

’
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£{k) z E, g(k) = £(k)g(k-1) 2 £(k)E(k-1)...£(1},

7)) 2
gty 2 (EHE)2 500 gn)*
et

{cf. Theorem 4, 5, 6, Corollary 7b, (61)). Moreover, by methods similar to

i

tlose for Theorem 7 one shows (cf. Valiant [287):

(66) ey = (7% 0% 50 500 VR

[ To prove this, we first show that each ki-regular bipartite graph G with

2n points has at least

(67) ((Ef)Z_Q—Zk’f(Q)k)n

k-factors. Indeed, make all possible graphs G' as in the proof of Theorem 7

kn 1-factors.

(with s=k and t=1). Each of these graphs has at least f(1)
Each l-factor of G' corresponds to a k-factor in G. Conversely, any fixed

k-factor in G corresponds to a l-factor in exactly

k!{kﬂ—k)!)Zn

(2-1) 1%

(68) (

graphs G' (the edges of the k-factor have to be divided among distinct
points of G'). So the number of k-factors in G is at least

v - 'y -
163) ((ki).)2n-f(Q)kn.(k£(k£ k).) 2n

g1k (e-1) 1%

(using (59)), which is equal to (67).

Now we have:

(70) (the number of l1-factors in G)k > (the number of k-tuples of pair-
wise disjoint l-factors in G) = (the number of pairs of a k-factor

in G together with a k-edge-colouring of the k-~factor) 2

(H22 ™ s gm)?,

which implies (66).]
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Using the bounds of (65) and (66) one can derive the following bounds

for f£(k) and g(k) for k = 1,2,3,4,5,6,7,8,9,10:

£(1)=1, g(1)=1,

£(2)=1, g(2)=1,

£(3)= %, g(3)=%,
1.5 = 2s<g£4)<§ = 1.6875, g(4)= 3 = 2.25,
1.839 ~ 5/e< £(5) S5 = 2.048, 4.139~45/4e< g(5) < 5!%/5° = 4.608,
2.222~20/9< £(6) <5°/6°~2.411, g(6) =6!%/6° ~ 11.111,
2.575~ 7/e<f£(7) S6/7°=2.776, 28.613--19989s g(7)y <7377 =~ 30.844,
2.943~ 8/e<f(8) <7/8~3.142, g(8)=8!%/8 ~ 96.899,
3.311~ 9/e< £(9) < 8'/9'~ 3.508, g(9) =91%/9° ~ 339.894,
3.679% 10/e <£(10) < 9°/10%3.874, 1250w&:(9-)-s g(10)<10'3/10°~ 1316.819.

5. BREGMAN'S UPPER BOUND.

It is easy to see that the maximum permanent of doubly stochastic
matrices is 1. Similarly, the maximum permanent of matrices in Ai is k™.
However, if we go over to a further discretization, and we restrict the
entries of the matrices to O and 1 only, less trivial upper bounds can be
obtained. In 1963, Minc [20] published a conjectured upper bound (see
Theorem 8 below), which was proved in 1973 by Brégman [4]. His proof is
based on ideas from convex programming and on some theory of doubly stochas-
tic matrices. Here we give the shorter proof as described in [23]. This
proof uses the fact that if tl""’tr are nonnegative real numbers, then:

(71)

[ This follows from the convexity of the function xlogx, by taking logarithms
of both sides of (71), and by dividing these logarithms by r.]

THEOREM 8 (Brégman's upper bound). Let A be a square {0,1}-matrix of order .

n, with r, ones in row i (1<i<n). Then
n .
(72) pera < 1T r ! 1,

PROOF. We use induction on n, the case n=1 being trivial. Suppose the theorem

has been shown for (n-1)x(n-1)-matrices. We shall prove:
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1/1 4y npera
r, ! l) per R

n; A n
(73) (perm) PR < (M x,

i=1
which implies (72).
We first give a series of (in)equalities, which we justify afterwards.
The variables i, j and k range from 1 to n. Let S denote the set of all

permutations o of {1,...,n} for which a, =1 for all i=1,...,n. So

io (i)
sl = pera.
(74) (perA)nPerA i g (perA)PerA s E(riperA E perAikperAik)

2 n ) o
= II ((Or,).(Upern,  ..)

oes i7i i io (i)

1/r. 1/r.-1

S n((Meo.m¢ 0 et 00 en: ) -

ces it 373 i3

J#i J#L
%0 (1) 25 (1)~
1/r. 1/r.-1

= ((gri>.(g( I org: Hoo 1 (r;-1)2 Iy) =

oes i3 i#3

d50(1)" 330(1)!
(n-r . (r . -1)/(x.-1)

£ (D). UL IPRTERE i) =

oeS i3 J
1om (e V) & (np o Me) pRerR

1 1 1 1

Explanation: 'is trivial; > use (71) (note that r, is the number of k such

= = .3
that aik—l and perA Xk,aik=lperAik)' the number of factors r, equals

perA on both sides, while the number of factors perAik equals the number of

in case a,.=1, and 0 otherwise);
k ik

apply the induction hypothesis to each AiO(i) (i= 1,...,n);5 change the

o€ S for which 0(i) = k (this is perAi
4

order of multiplication;6 the number of i such that i#3j and ajc(i)=0 is
n—rj, while the number of i such that i# j and ajc(i)=1 is rj—l (note that
ajo(j)=1’ and that the equality is proved for all fixed 0 and j separately);
"and ° are trivial. U

In particular it follows that if all row sums of A are exactly k then

(75) pera < (k1 /¥R,
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It is easy to see that for fixed k the ground number here is best possible,

also if we restrict ourselves to {0,1}-matrices in Ai.
6. EULERIAN ORIENTATIONS.

As a further illustration of the results and methods above, we consider
eulerian orientations. For any undirected graph G = (V,E), let e(G) denote
the number of eulerian orientations of G. Here an eulerian orientation is
an orientation of the edges such that at each vertex the indegree is equal
to the outdegree.

Then if G is a loopless 2k-regular graph with n vertices, the number

of eulerian orientations satisfies:

(76) )P se@ = ( <2kk))n,
and moreover, for each fixed k, the ground numbers in (76) cannot be im-
proved ([251).

There exists a direct relation between € (G) and the permanent function.
Let G = (V,E) be a graph in which each vertex v has degree deg(v) even. Let
B be the incidence matrix of G, with |V| rows and |E| columns. Let the
matrix A arise from B by repeating, for each vertex v, the row of B corre-
sponding with v %deg(v) times: Then A is a square {0,1}-matrix of order

|E|. Now one easily checks that:

perA

(77) e(G) = =g -
VIgv(lzdeg(v)).

Substituting Brégman's upper bound (Theorem 8) in (77) gives:

(deg(v)\%

(78) e (G) %deg(v)} ’

T vev
and the right hand side in (76) follows. The graph with 2 points connected
by 2k parallel edges shows that we cannot have a lower ground number in the
upper bound in (76).

Concerning lower bounds, Falikman and Egorychev's lower bound, in the
form (6), gives that if G is 2k-regular, then Aeﬁii, and so with (77):

2
n

kn (nk)!
Cxe®

(79) e(G) =z (2
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Asymptotically this implies:

(80) e(G) 2 (?%4%§gk)“

The conjecture (10) would imply the better lower bound:

(L -0 N
k!

(81) () 2
(2x) 2%2

However, the lower bound given in (76) is even higher (and is best possible).
This is not surprising, as generally the permanent function seems to approach
its minimum value if the matrix tends to have a random structure, whereas
the matrix A obtained from G as above, has several equal rows.

The lower bound in (76) can be shown as follows. Let €(2d1,...,2dn)
be the minimum of €(G), where G ranges over all undirected graphs (possibly

with loops) with degree sequence 2d1""'2dn' Then:

(82) e(24

n :
greei2d) = 02 Hlag)-

This can be seen by induction on 24 +...+2dn. If this sum is 0, (82) is

1

trivial. If, say, dlz 1, let G be an undirected graph with degree sequence

2d1,...,2dn and with €(G) = €(2d1,...,2dn). Let point v have degree 2d1,
and let el,...,e2d1 be the edges incident with v. For 1$i<3j= 2d1, let
sij(G) denote the number of eulerian orientations of G in which e, and ej
are oriented in series (i.e., one of them has v as tail, and the other has
v as head). If, say, e, = {u,v} and ey = {v,w}, let Gij be the graph ob-

tained from G by replacing ey and ej by one new edge {u,w}. Then:

= 2> -
(83) e;5(@ = (e, ) = £(24,-2,24,,...,24 ).
Therefore, inductively,
1 o =2 294
= —_— = . - l---12d 2
(84) € (G) " zl£i<j52d1 €50 = a) ( ) )c(zd1 2,24, )
1
—2(284y - (dq-1) (2d1-2 no -4 2484 no -4, .24,
> = 1
4 (212 (d —1) i (d.] id1 2 (d‘)

1 i i

So (82) is proved, and the lower bound in (76) follows.

By averaging techniques, similar to those in the proofs of the Theorems
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5 and 6, one shows that for fixed k the ground number in the lower bound in
(76) is best possible. It is also best possible if we restrict G to loop-
less graphs. This follows with the help of the Alexandroff-Fenchel perma-
nent inequality (Theorem 1) - see [25]. We conjecture that it is even best
possible if G is restricted to simple graphs (i.e., no loops or multiple
edges) . Moreover, we conjecture that for simple graphs a better upper bound
can be obtained: if G is a simple undirected graph with degree sequence

24 .,2d_, then
n

17"

n 1/(28,+1)
(85) (Conjecture) €(G) £ T e i

, %24, +1
i=1 i

(Kt being the complete undirected graph on t points). A problem we met in
constructing a proof similar to that of Bré&gman's upper bound (Theorem 8)

is that we could not find a suitable formula for e(Kt).
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